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Dynamics of fracture in dissipative systems
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Dynamics of fracture in two-dimensional systems is studied with a dissipative network model by including
the local relaxation of the force field via Maxwellian viscoelasticity. In addition to disorder the fundamentals
of crack formation and propagation depend on the strength of dissipation compared to the loading rate. We
investigate the dynamics of a single crack and the role of stress reduction at the crack tip when dissipation is
increased. As a consequence, the crack starts to propagate slowly and it reaches terminal velocity later. If the
relaxation of local forces is strong enough compared with crack velocity, crack arrest takes place. For a
disordered system, the presence of strong dissipation in local dynamics is reflected as ductility and as an
increase in the damage, accumulated during the fracture process.@S1063-651X~97!13511-5#

PACS number~s!: 05.90.1m, 46.10.1z, 62.20.Mk, 83.50.By
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I. INTRODUCTION

The development of failure in a medium has received a
of attention due to its intrinsic technological importance@1#.
The strength of a material depends on how small scale
fects grow and get connected, and on the amount of diso
in it. The final breakdown occurs when one of the possi
many cracks has grown over a critical size. In addition
disorder many real materials, like fiber composites such
paper, polymers, and metals at high temperatures, dis
time-dependent properties. Suchviscoelasticmaterials show
creep and relaxation of applied stress and their respons
highly sensitive to the loading rate@2#. The reason for vis-
coelastic response is, for example, in polymer melts belie
to be the slow readjustment of macromolecules to the app
stress. It is similar to the dynamics of dislocations, that gi
rise to plasticity in the stress-strain characteristics of met

The development of failure has been studied widely w
discrete lattice models@3–6#, in which the failure process
takes place under adiabatic conditions. In this case the s
lations are conducted in a way that corresponds to a slow
of straining: the local stress field is allowed to readjust its
to the changes in the environment. Hence such quasis
models involve no time scale, but a series of equilibriu
states. In many real-life fracture problems, however, the m
terial never reaches global elastic equilibrium, but the s
of the system evolves dynamically. This involves, for e
ample, the traveling of elastic waves in the system — cau
by external impacts or propagating microcracks — wh
may result in some extra damage in the material.

In this paper we extend our previous study@7# of dynamic
fracture in a simple time-dependent mesoscale system.
will concentrate on analyzing the interplay between disor
and dissipation. This paper is organized so that we first
cuss the model. Then we present results of the single c
dynamics simulations, in which a small initial crack in th
middle of otherwise homogeneous system has been in
duced. Next we discuss the results of our simulations i
randomly bond-diluted disordered system. This part make
more detailed study of the available parameter space
561063-651X/97/56~6!/6443~8!/$10.00
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presented in our previous paper@7#. Finally we draw conclu-
sions.

II. MODEL

In order to study the dynamics of fracture we have dev
oped a phenomenological model that is simple enough
including viscoelasticity and allows simulations of relative
large systems. Initially our model is constructed to be
square mesh of sizeL3L. Each site is assigned a unit mas
whose dynamical behavior will be monitored. These m
sites are not atomic but a site can be understood as the
of a certain piece of material. Hence, the length scale of
model is mesoscopic rather than being microscopic as
conventional molecular dynamics models@8#. The mass sites
are connected by nearest-neighbor bonds, as in quasis
lattice models for fracture@3–6#. In our model the bottom
row of masses is always kept fixed while the topmost row
masses is moved in unison and with a constant rate du
tensile elongation in they direction as denoted byde/dt. In
the x direction we apply periodic boundary conditions~see
Fig. 1!.

The elastic interaction strength of a bondi j between the

FIG. 1. Description of the model. Neighboring mass sites
coupled with dissipative Born springs, parametrized with tens
and bending stiffnessa and b, respectively. The dynamics of th
local bond forces are given by Eq.~2!. A bond is missing with
probability (12p).
6443 © 1997 The American Physical Society
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nearest-neighbor sitesi and j is described by the Born
Hamiltonian@9#

Hi j 5
a

2
@~uW i2uW j !•dW i#

21
b

2
@~uW i2uW j !•dW'#2, ~1!

in which a andb are elastic coefficients related to the d
placements parallel and perpendicular to the bond,uW j is the
displacement vector of sitej , and dW i ,' stands for the unit
vector, either parallel or perpendicular to the vector conne
ing the sites in the undeformed mesh.

It should be noted that without an angular or bending p
in the potential, the square mesh cannot describe defor
tions realistically, because it has directions in which shear
can happen without any cost of energy. The Born Ham
tonian is the simplest one in describing both the tensile
bending stiffness of a square mesh. Hence it is computat
ally less demanding than various other bond-bending Ha
tonians@5#.

Since the Born Hamiltonian of Eq.~1! describes only the
energetics of the system we have to include the choice
dynamics. This plays a crucial role in modeling fracture, b
cause simultaneously at least one time scale is introduce
in classical molecular dynamics simulations@8,10#. For the
purpose of mimicking the local adjustment of the mater
structure to the stress we introduce a dissipation mechan
to the forces acting on mass sites. This is done through
classical Maxwellian viscoelasticity@2#, which allows the
description of relaxation and dissipation of elastic energy
a dynamical decay of the local forces. Hence the constitu
equation for the forces reads

] f i j

]t
5

] f H

]t
2

1

t
f i j , ~2!

in which f i j is the dynamical force between neighboring si
i and j , and f H is the elastic or reversible force derived fro
the Born Hamiltonian.t is a phenomenological dissipatio
constant, which sets the internal time scale for the relaxa
of the forces. Thus our choice of local dynamics is equi
lent to a Born spring with tensile and bending stiffness
series with a viscous dashpot. This can be seen as a ge
Maxwellian viscoelastic element describing a bond as
picted in Fig. 1.

There are a number of ways to introduce disorder into
system. For example, the fracture limit or some of the bo
parameters (a, b, t) could be locally distributed. In this
study we have chosen the disorder to be quenched b
disorder, i.e., a fraction of bonds has been removed at
dom with probability (12p). Whenp50.5 there is already a
percolating path through the system. Forp.0.5 under load-
ing, a fracture path grows dynamically through the system
a result of bonds rupturing at the given fracture limit.

The criterion for bond rupture can be based either on
amount of stress or strain in it. Here we have taken the la
alternative by defining the bond rupture to occur when
tensile elongation exceeds 1%, i.e., we denotee f50.01. This
fracture condition can be compared with that used by S
nette and Vanneste~SV!, whose lattice model@11# is based
on the rupture of fuse elements, when the local tempera
exceeds a critical value. In their study the continuou
t-
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changing temperature field, controlled by the individual fu
currents, is analogous to plastic deformation. However,
our model the local strain is directly responsible for the on
of fracture. In both cases, the instantaneously high stres
or currents in the SV model, do not necessarily break
bond, but the memory from previous deformations —
cluded in the bond length, or fuse temperature in the
model — may cause the rupture at low local stress levels
interpreting our simulations, it should also be remembe
that the redistribution of internal stresses occurs with a fin
speed. This is in contrast to the quasistatic models.

In the simulations the normalized strain rate per bond
chosen to be de/dt52.531024 ~in most cases! or
2.531025. Hence, the topmost row of the system is mov
with the rateL3de/dt. For a given strain rate (de/dt), the
dissipation constantt and the strength of elastic interaction
(a, b) determine the time scales of our model dynamics.
addition to these time scales the fracture limit determine
macroscopic time scale, which is the average time for
failure to be of the ordere f /(de/dt). Compared to the linea
dependence between local stress and strain in models
elastic materials, our choice for the constitutive relation i
plies that the local stress depends not only on the pre
strain, but on the whole preceding strain history.

The time scales of the system, especially the harmo
ones~related toa andb), require the time step of integratio
dt in Eq. ~2! to be sufficiently small. In addition, the require
ment in the simulations to allow only one bond at a time
break sets another limitation to the allowed time step.
order to find a fast and sufficiently accurate integrati
method we tested two algorithms, the simple Euler and
original Verlet @8#, using dt50.001. Both of these algo
rithms gave indistinguishable results for the same initial c
figuration. Also we varied the time step of the Euler alg
rithm between 0.004 and 0.0005 without seeing a
significant change in the results.

It should be borne in mind that the introduction of th
constant strain rate at timet50 — also the time for starting
the integration of Eq.~2! — will initially generate a shock
wave to the system. The amplitude of this shock wave sho
a dependence on the constant strain rate. Forde/dt
52.531024 this amplitude was found to be less than 0.1
of the initial bond length. The effect of the initial shock wav
diminishes if the constant strain is decreased or the strain
increases gradually from zero to the constant value. In
ordered systems, however, the coherence of these s
wave tends to be lost.

Finally some remarks about the length and time scale
our model are in order. First we note that our model does
have a real physical length scale, rather we have consid
a vague counterpart. A mesoscopic scale was chosen to
scribe materials that show~strong! disorder in terms of den-
sity distribution or are otherwise difficult to model in micro
scopic scale. An example of such material is paper t
shows density variations ranging from submillimeter sc
up to a few millimeters. Now if we were to carry out simu
lations with a denser mesoscale mesh in the same phy
system, the mass of each site and the elastic coeffici
should be scaled such that the macroscopic properties
Young’s modulus and the total mass of the system rem
unchanged. However, due to the fact that we are lack
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56 6445DYNAMICS OF FRACTURE IN DISSIPATIVE SYSTEMS
experimental observations of the time scale of the me
scopic viscoelastic effects, the question of how the phen
enological dissipation constant should be scaled remains
solved. Then instead of checking mesh convergence we h
checked the finite size effects by changing the system
from mostly studiedL5100 up to L5200, but without
changing the mass, elastic coefficients, and dissipation
stant. The results were found to be the same. All in all,
expect our simple model to describe some salient feature
real systems.

III. RESULTS

A. Single crack dynamics

In order to characterize the role of dissipation in the cra
propagation process, we first investigate the behavior o
single crack in an otherwise homogeneous sample. So
what similar studies have been made by Sieradzkiet al. @12#
and Furukawa@13#. However, our system is not intended
mimic an infinite sample, and hence the finite size effects
expected to influence crack propagation by changing
stress enhancement around the crack tip@21#. Initially we
introduce a small crack in which two adjacent bonds para
to the external loading are removed from the middle of
sample. This serves as the seed of crack propagation u
sufficient external straining. The velocity of the crack tip
investigated under constant strain rate by varying the di
pation (t) and the bending stiffness of the bonds (b).

In Fig. 2 we show snapshots of stress distributions in
sample during crack propagation. In weakly dissipative s
tems, the abrupt loading procedure causes a shock w
which is seen as a background ripple. Increasing the am
of dissipation makes the ripple disappear. A much m
spectacular feature is seen when the rupture of an individ
bond releases the constraining force at that particular po
As a result the neighboring bonds experience increa
stress, which spreads out of the damaged area at most
the longitudinal speed of sound, i.e.,vs.Aa ~with the
proper choice of units!. In this model the shape of the relax
ing stress field is determined by the ratio between the ten
stiffness (a) and bending stiffness (b). Due to the finite
sample size, the stress waves of bond ruptures reflect f
the upper and lower sample boundaries, yielding an inter
ence pattern. This is also how the crack may interact w
itself due to a finite sample size.

Knowing the speed of sound (vs) and the crack velocity
(vcrack) we can estimate the time for the reflected shock w
to interact with the propagating crack tip. If measured fro
the rupture of the bond, the time required for the wave
reach the crack tip ist1.2Dy/Aa, whereDy is the shortest
distance from the sample boundary to the crack. Thus,
t1 the crack tip has moved a distanceDx;vcrackt1

;2vcrackDy/Aa. Then at the elastic limit, we obtain for th
crack tip velocity aAb dependence~see the details in the
Appendix!. The same dependence is seen for the satur
value of the crack velocity in Fig. 3. Thus we conclude th
in case of small or moderate dissipation (t*10) the reflected
shock wave may affect the crack propagation, provided
the a/b ratio is large, or the distanceDy is small. The trav-
eling shock wave can enhance the crack growth by bring
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the bond in front of the straight propagating crack earlier
its rupture limit than without it.

In weakly dissipative systems (t5100), the crack tip ve-
locity reaches its terminal value rapidly, as depicted in F
3. This occurs especially for large values ofb, which ac-
counts for increased bending stiffness between neighbo
mass sites. With increasing dissipation, however, the ef
of relaxation becomes noticeable at the beginning of cr
propagation. Due to inertia the crack tip starts to mo
slowly, and it reaches the terminal velocity later than
weakly dissipative samples. In addition, the terminal veloc
is slightly decreased~about 10%! compared to the system
with t5100. In Fig. 3 we also show a striking case of ve
strong dissipation (t51.5). The slow startup of crack propa

FIG. 2. Snapshots of the stress distributions in bonds paralle
the loading.~a! t5100,b5250, ~b! t510, b550. In both the fig-
uresL5100,de/dt52.531024, anda5500.
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6446 56T. T. RAUTIAINEN, M. J. ALAVA, AND K. KASKI
gation is even more prominent and the crack tip veloc
does not reach a terminal velocity but drops to zero. The
fore, we can separate three regimes in thevcrack(t) curves of
Fig. 3. For small and moderate dissipation (t>10) there is
the regime of short initial transient and fast saturation t
b-dependent terminal velocity. Then for strong dissipat
(t<5) there is the regime of long initial transient and slow
saturation to a terminal velocity. Finally, for very strong d
sipation (t<1.5) there is a regime of very long initial tran
sient, ending up in acrack arrest.

The effect of dissipation on the local forces in the syst
is depicted in Fig. 4, which shows stress profiles ahead of
propagating crack tip. It is evident that increasing the amo
of dissipation will decrease the stress values dramatically
weakly or moderately dissipative system@Fig. 4~a!, t510#
exhibits a dynamic stress profile, in which the magnitude
the maximum stress at the crack tip shows a fast initial
crease and then it decays slowly throughout the propaga

FIG. 3. Crack tip velocity vs time.a5500 andb550 ~solid
lines! and b5250 ~dashed lines!. The symbols are assigned wit
different degrees of dissipation: *,t51.5; s, t55; h, t510; L,
t5100.

FIG. 4. Stress profiles ahead of the propagating crack tip im
diately before the next bond rupture.a5500 and b5250. ~a!
t510, ~b! t53, ~c! t51.5. Thex coordinate is defined as in Fig. 1
y
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until the final failure. This behavior corresponds to the
gime of short initial transient and fast saturation to a termi
crack velocity. For strong dissipation@Fig. 4~b!, t53# the
initial increase in the stress maximum is gradual, follow
by a fast decay until the final failure. This behavior corr
sponds to the intermediate regime of long initial transie
and slower saturation to a terminal crack velocity. Final
for very strong dissipation@Fig. 4~c!, t51.5# the stress maxi-
mum grows again slowly to a small value then decaying u
the point of crack arrest. Now the stress profile has beco
flat showing only a very minor deviation from the bac
ground stress. This small stress makes further bond elo
tion at the crack tip very slow at best, causing bond ruptu
to stop or occur elsewhere in the system. If we increase
dissipation even further (t,1.5), the stress enhancement
the crack tip becomes insufficient to cause even a sin
bond rupture. Thus we conclude that very strong dissipa
makes the system ductile.

In recent experiments@14# and simulations@15,16# crack
tip branching has been seen. These are caused by an
mechanism of changing stress field distribution which o
model as such cannot repeat. This is due to the initial m
geometry, loading direction, and the chosen fracture cr
rion. In our model with the load being along the princip
mesh direction it is always most beneficial for the crack
propagate straight through the system along the other pri
pal mesh direction. However, crack branching is seen to
cur in such mesh geometries as triangular or hexago
meshes but also in square meshes that are loaded in a d
tion different from the principal mesh direction, e.g., alo
the mesh diagonal. A more detailed account of crack bran
ing using the same computer model as we have done but
triangular lattice has been presented by Heino and Ka
@17–19#, and therefore further discussions are omitted he

B. Disordered system

Now we move over to study disordered systems with r
dom bond dilution, below the percolation threshold, i.
p.0.5. In Fig. 5 we present the loading characteristics
moderately dissipative systems (t510) for various degrees

e-

FIG. 5. Stress-strain curves for various degrees of dilutionp
5 1.0, 0.9, 0.8, 0.7, and 0.6, withL5100, a5500, b5250, and
t5 10.
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56 6447DYNAMICS OF FRACTURE IN DISSIPATIVE SYSTEMS
of disorder before final fracture. The general features of
stress-strain behavior are of a material displaying Maxw
ian viscoelasticity. Under steadily increasing strain there
an initial region that corresponds to ideal elasticity cross
over to a viscous phase, with a final state of constant str

For strong dissipation, internal stresses relax rapidly,
the system under further straining settles down to a
stress level. On the other hand, for negligible dissipation,
behavior of a system resembles that of ideal Born sprin
The role of dissipation can be described through the prod
t de/dt, which serves as a measure of elastic properties
system@23#. It also determines the steady-state stress, wh
is achieved with sufficient straining. In the limit of vanishin
strain rate and dissipation, the ensuing force-elongation c
acteristics turn out to be equal with those of a correspond
adiabatic model@6#.

The reduction in stress enhancement with increasing
sipation described by the single crack case~Fig. 4! is clearly
reflected on the fracture behavior of disordered systems.
finite strain rates, different regimes are observed in the fr
ture process. Their characteristics for small amount of dis
der (p50.9) are demonstrated in Fig. 6, which shows h
individual fracture events evolve in the direction perpendi
lar to the external strain. For negligible dissipation@t5100,
Fig. 6~a!# fracture is found to be dependent on the load
procedure. The initial shock wave, caused by the abrupt
plication of constant strain rate, travels back and forth pr
tically without decaying and may break individual bon
here and there in an uncorrelated manner. Due to the lac
dissipation, and especially increased stress enhancem
these microruptures, together with the pre-existing disor
soon start to correlate. When one of the cracks starts to do
nate, the system suffers rapidly a macroscopic breakdo
This can be interpreted as the crack propagation phase
general, at finite strain rates with very small dissipatio
there may exist competing microcracks, which have nuc
ated from several defects — not only from the most criti
one @20#, as is common in models of brittle fracture wit
fixed disorder. The microcracks exhibit correlated grow

FIG. 6. The dynamical development of cut bonds perpendic
to the external strain.a5500, b5250 and~a! t5100, ~b! t510,
~c! t51. L5100 andp50.9, the initial disorder in the system bein
identical in all these cases.
e
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and can eventually coalesce. Thus the fracture process
pends on the dynamical evolution of individual mass sit
not only on the initial disorder.

In Fig. 6~c! we show the fracture behavior in the oppos
extreme of very strong dissipation, i.e.,t51. Dissipation
damps effectively all the disturbances in the system, and
shock wave introduced at the beginning of loading has
effect on the fracture behavior. As already seen in the cas
single crack dynamics, cracks start to propagate very sl
ly — if at all — from initial defects. Similarly with the case
of single crack dynamics~see Fig. 4! the stress enhanceme
at the crack tip is strongly reduced compared to the wea
or moderately dissipative system. There is practically no
tential energy stored in the bonds, and an individual rupt
does not necessarily cause the next bond rupture to
place close to the current one. The interactions betw
neighboring mass sites diminish and the local dynamics
comes more and more independent of the dynamics of
surroundings. The lack of crack tip related stress enhan
ment makes the system very ductile. As a result, v
strongly dissipative systems evolve towards the macrosc
breakdown via numerous microruptures in an uncorrela
fashion, as can be seen in Fig. 6~c!. In contrast to the weakly
dissipative system this system is capable of withstandin
considerable amount of external strain. Eventually, t
drives the system far from its initial mesh geometry to
drastically deformed final configuration, from which it is un
able to return to its original form. In real materials this ph
nomenon can be interpreted as permanent plastic defo
tion, which in our model is captured by the dissipati
nonrecoverable response of the dashpot elements. Note
if the strain rate is sufficiently high, the strain distribution
the system shows a bias towards the strained edge. Thu
spite of the initial disorder, the bonds near the strained e
are likely to meet the fracture condition first.

Between the above extremes lies the regime of mode
dissipation@t510, Fig. 6~b!# which shows features of both
the weakly and very strongly dissipative systems. For sm
amount of strain, i.e., early in the straining history, uncor
lated bond ruptures appear here and there. When the st
ing increases bond ruptures show once again correlation
several microcracks tend to grow. This behavior of mic
crack nucleation is reminiscent of ductility in a strongly di
sipative system. In Fig. 6~b! we also observe several loca
crack arrests, most likely due to dissipation.

In Fig. 7 we show the number of cut bonds as a funct
of increasing strain for various amounts of disorder@22#. In
the main figure of the present paper the cases of str
(t55) and very strong (t51) dissipation are displayed
while the inset shows the behavior of a very weakly dissi
tive system (t5100). In these curves the end points indica
the final fracture. As a general observation we can state
when disorder increases (p decreases!, the amount of dam-
age the system can withstand decreases rapidly. Also
more dissipative the system is, the more damage it can w
stand before final fracture, i.e., the system shows increa
ductility for increased dissipation.

In addition, we see that in a weakly disordered syst
(p50.820.9) the proportion of ruptured bonds first grow
rapidly. Then the accumulation of damage becomes slow
and the system is able to accommodate additional strain

r
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However, in strongly disordered systems (p50.620.7) this
tendency is lost. From the inset of Fig. 7 we see tha
weakly dissipative but strongly disordered system is able
withstand more strain than a weakly disordered one. For
system with strong or very strong dissipation, this behav
is reversed: a weakly disordered system bears straining m
since the individual bond ruptures do not correlate@cf. Fig
6~c!#.

In Fig. 8 we show configurations of a system with sm
disorder (p50.9) after final failure for three different value
of dissipation. The initially removed bonds are exactly t
same in all these cases, so that differences arise only f
variations in dissipation. Under loading, the system w
t51 suffers from damage occurring all over the system d
to microruptures being uncorrelated. Separately propaga
cracks are hardly distinguishable, as was observed alread
Fig. 6~c!. The amount of damage is clearly diminished w
decreasing dissipation in Figs. 6~b! and 6~a!, where ruptures
are concentrated in cracks. Ifp is close to unity, the numbe
of removed bonds is very few and scattered. Then in wea
dissipative systems the dynamically generated fracture p
are rather straight, especially if thea/b ratio is large. If the
disorder is increased, i.e.,p decreases, the picture emergin
from our model follows that seen in adiabatic simulation
the wandering of the final crack becomes more erratic, as
removed bonds contribute significantly to the final fractu
path and the breakings of distant, individual bonds are su
cient to bring about the final fracture. Decreasingb is attrib-
utable to the diminished interactions between the rows
bonds, which also enhances the wandering of the crack
In addition, the initial disorder in the system provides ra
dom points of crack branchings.

We have also studied the behavior of the system w
smaller strain ratede/dt52.531025. Simultaneously the
value oft was scaled in order to keep the productt de/dt
unchanged. In this case the differences between fracture
gimes diminish. The dynamics of fracture becomes less s

FIG. 7. Time development of the number of cut bondsNc in
1003100 systems withde/dt52.531024, for two values of dissi-
pation (t51 andt55) and increasing disorder (p50.9, 0.8, 0.7,
and 0.6!. a5500 andb5250. The inset illustrates the fracture b
havior with t5100. The end points of the curves indicate the fin
fracture. The curves are averaged over several simulation runs
a
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sitive to varying degree of dissipation, especially in syste
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FIG. 8. Final configurations after breakdown in 1003100 sys-
tems withp50.9. The filled circles correspond to initially random
removed bonds while the squares are loading induced cut bond~a!
t51, ~b! t510, and~c! t5100. The initial disorder in the system i
exactly identical for all values oft.
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rapidly and the local stresses correspond better to the e
nal loading configuration. This inhibits multiple cracks fro
growing. In addition, a weakly dissipative system is not
strongly affected by the loading procedure, nor does it a
longer support several independent simultaneously propa
ing cracks. The fracture shows very brittle characteristics
is typical for elastic systems under adiabatic loading con
tions. When strain rate is reduced to1

10, a system with strong
dissipation, however, does not exhibit a drastic change
fracture characteristics. In the limit of vanishing strain ra
the adiabatic behavior of quasistatic lattice models@6,24,25#
is encountered.

Apart from using the same set of parameters as in Fig
we have also studied the system with lower bending stiffn
(b550). We find the system to be more ductile, i.e., wit
standing more strain, than the system with higher bend
stiffness (b5250). Otherwise these systems behave si
larly. It is also seen that the number of simultaneously pro
gating microcracks grows, which is attributable to the dim
ished interactions between the rows of bonds. Th
concerning ductility and elastic stiffness of the systems,
a/b ratio has a similar effect on mechanical properties
dissipation: increased ductility corresponds to a decreas
the capability of the system to store elastic energy.

IV. CONCLUSIONS

We have investigated fracture dynamics in systems w
varying degree of dissipation and disorder. In the sin
crack study the effect of dissipation on the crack propaga
process was most striking at the beginning of the cr
propagation phase, whereas in the end of this phase the
minal velocity exhibitedAb dependence. The slow startup
crack propagation was attributable to the increased diss
tion, which eventually stopped or completely inhibited t
crack growth. In disordered systems, the strong dissipa
was reflected in the slow crack nucleation and uncorrela
microruptures, leading to very ductile characteristics. On
other hand, very brittle behavior was encountered in ne
elastic and weakly disordered systems, in which propaga
cracks could clearly be distinguished, and macroscopic f
ure occurred soon once one of the cracks started to domin
Between these extremes lies a fracture regime, wh
showed features of both the ductile and brittle characteris
clearly correlated crack growth resembling the weakly dis
pative characteristics, but also crack arrest due to presen
dissipation. However, with increasing disorder, these diff
ences become less pronounced. In the limit of slow dyna
er-
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ics, the fracture characteristics of our model approach th
of typical adiabatic models. The differences are due to
finite strain rate and the nonlinear dissipative response of
system.
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APPENDIX

Let us consider a configurational model of a crack tip~cf.
Ref. @13#!, in which for simplicity the bonds are assumed
be purely elastic Born-type springs; see Fig 9. The leftm
bond is supposed to represent the crack tip, which has
reached the fracture threshold. Then its length isl 0511e f ,
and the next two intact bonds ahead of the crack tip h
lengths l 1511e1 and l 2511e2, respectively. For these
strain values the following holds:e2,e1,e f . Due to bond
rotation, the mass sites of the crack tip ‘‘feel’’ in they di-
rection a net forceFb5b(d12d2), in whichd15(e f2e1)/2
and d25(e12e2)/2 ~only the upper half of the otherwis
symmetric configurational model is considered!. As a conse-
quence of the acceleration of the mass site~with massm),
the first intact bond is expected to reach the fracture thre
old condition in timet5A2d1m/Fb. This gives us the fol-
lowing estimate for the crack tip velocity:vcrack5kAb/m,
wherek includes the strain field geometry viae1, e2, ande f .
Although we have assumed idealized steady-state condit
and neglected all initial velocities in this analysis,vcrack;Ab
is revealed.

FIG. 9. Configurational model of a crack tip.
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